

Wide Bandgap Semiconductor Technology Initiative: High Power Electronics (HPE)

John C. Zolper
DARPA/MTO
jzolper@darpa.mil

Wide Bandgap Kickoff Meeting

21 - 22 May 2002

WBG High Power Electronics: enabler for future "electric force"

Wide Bandgap High Power Electronics (HPE)

High Voltage (1-25 kV)

Simplified circuits and expanded capability

High Current Density (>1kA/cm²) High Duty
Cycle
(>100 kHz)

Smaller, lower loss, active and passive components

High Temperature (>250 °C)

Smaller cooling systems

Silicon Carbide

Wide Bandgap Semiconductor Technology

SiC Reduces Switching Losses

Motor Drive

Diode switching characteristics

High Temperature Operation

High temperature operation reduces cooling requirements and system cost

Critical Challenge: Material Quality for Large Area Devices

Defect etch of 75mm wafer (n-type)

Phase I Technical Challenges

SiC Power Transistor

On-state characteristics: FET

Specific On-Resistance (m Ω - cm 2)

10⁻¹

10⁻²

10⁻³

75% design

goal

Blocking Voltage (V)

10³

10⁴

SiC PIN diode on state voltage

Semiconductor resistance only,
Parasitic contact resistance not included

task	12-18m	Goal
1. SiC substrate	(a) < 1 micropipes/cm ² for 3 inch; (b) < 10 micropipe/cm ² for 4 inch	(a) < 0.2 micropipes/cm² for 3 inch; (b) < 1.0 micropipes/cm² for 4 inch
2. SiC substrate	(a) < 500 dislocations/cm² for 3 inch ; (b) < 1000 dislocations/cm² for 4 inch	(a) < 50 dislocations/cm ² for 3 inch; (b) < 100 dislocations/cm ² for 4 inch
3. Thick epi	100 um epi with < 5% thickness and doping variation at 5x10 ¹⁴ cm ⁻³ with < 1.5 total electrically active defects/cm ² on 3 inch;	150 um epi with < 5% thickness and doping variation at 1x10 ¹⁴ cm ⁻³ with < 0.5 total electrically active defects/cm ² on 3 inch;

Red = primary milestones

HPE Milestones-2

task	12-18m	Goal
4. PIN	10 kV, PIN with V _f < 4.5 V at 100 A/cm ² (≥ 50 A total	10 kV, PIN with V ^f ≤ 3.5 V at 100 A/cm2 (≥ 50 A total
on-state	current) with <100 mV drift over 100 hours	current) with <100 mV drift over 100 hours
5. FET	0.25 ohm-cm ² with 10 kV blocking	0.10 ohms-cm ² with 10 kV blocking
on-state		
6. mobility	100 cm ² /V-s in implanted p-well	200 cm ² /V-s in implanted p-well

Red = primary milestones

Program Plan

Go/No-Go

Phase II GO/NO-GO

Microsystems Technology Office

Go/No-Go

Phase I Selected Program

Development of 3-inch and 4-inch Silicon Carbide Substrates, Epitaxy, and MW Class Power Devices	Cree, Inc.
Development of Megawatt SiC Power Switches for High Frequency Power Conversion Applications	Rockwell Scientific, LLC
Innovative SiC Materials Technologies for High Power Device Applications	Sterling Semiconductor
Development of Process Technologies for High-Performance MOS- Based SiC Power Switching Devices	Purdue University
Low Surface Field DMOS Structures for Discrete and Integrated High-Voltage Silicon Carbide Power MOS-Gated Bipolar Transistors with Trench Epitaxial Regrowth	Rensselaer Polytechnic Institute
Very Low Defect Density 4H-SiC Thin Films and their Application in High-Power Devices (a-plane growth at NCSU only)	North Carolina State University
Development of Critical 4H-SiC Processes for Demonstrating A Novel SiC Power Switch Capable of 10kV-100A	Rutgers University
Ferroelectrics on SiC for power switches	Georgia Tech
Government evaluation team	ARL, NRL, NIST

18 month base programs with 6 month option = 24 months

Summary

- WBG HPE will enable superior power systems for the future electric force.
- Material quality remains the critical challenge.
- Program success requires successful demonstration of critical milestones.
- Expanded device and circuit activities in Phase II will only occur if Phase I milestones are demonstrated.

